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LE’lTER TO THE EDITOR 

Effective conductivity of many-component composites by a 
random walk method 

J F McCarthy 
Applied Mechanics and Electromagnetics Group, BHP Melbourne Research Laboratories, 
PO Box 264, Clayton, Victoria 3168, Australia 

Received 23 May 1990 

Abstract. An extension to the many-component case is given for a random walk algorithm 
which was recently introduced to calculate the effective conductivity of random mixtures 
with two finite conductivity components. The many-component algorithm has been tested 
for the case in which the conductivity distribution is generated by taking N-component 
conductivities and assigning them at random, with equal probability, to the sites of a lattice 
of size 303. Simulations have been done with N = 10, 100, 1000 and 27 000. Numerical 
results obtained by using the proposed random walk algorithm are shown to be in close 
agreement with those obtained using the conventional finite difference method. 

In a recent paper [ 11, a random walk algorithm for calculating the effective conductivity 
of random mixtures of two components, each with finite conductivity, was introduced. 
It is an extension of the ‘ant in a labyrinth’ algorithm [2], which only applies when 
one of the components has zero conductivity. Numerical results obtained using the 
proposed random walk algorithm were shown to be in close agreement with those 
obtained using the conventional finite-difference method for a variety of conductivity 
distributions (both isotropic and anisotropic, but necessarily statistically homogeneous 
over an ensemble) on three-dimensional cubic lattices. In this letter, an extension of 
the algorithm to the many-component case is discussed. Again, only numerical evidence 
is provided to support the validity of the algorithm and it would be highly desirable 
to put it on a sound theoretical basis. However, the author considers the numerical 
results to be sufficiently suggestive, and the algorithm itself to be sufficiently important, 
to merit attention at this stage. 

Consider a block of conducting material with an applied voltage. Ohm’s law gives 
the relation between the electrical current at any point in the block, , j ( r ) ,  and the 
voltage distribution, V (  r ) :  

j (  t) = a( r)V V( r )  (1) 
where a( r )  is the local electrical conductivity. If the block were made of homogeneous 
conducting material then a ( r )  = U would be a constant over the block, giving the 
electrical conductivity of the material. If the block were heterogeneous then Ohm’s 
law could still be applied in a statistical sense over the block, provided that the scale 
of the heterogeneities was small compared to the dimensions of the block. In that case, 
the relationship between the average current, 1 and the average voltage, V, over a 
cross section of the block would be given by: 

(2) 
where U* is called the effective conductivity of the block (see e.g. Batchelor’s review [3]). 

J =  & q q 7  

0305-4470/90/ 150749 +OS%O3.S0 @ 1990 IOP Publishing Ltd L749 



Letter to the Editor 

In general, U* is a second-order tensor. It can be anisotropic, even if the local 
conductivity is isotropic at each point in the block. Strictly speaking, U* depends on 
the boundary conditions for a finite block because the voltage distribution V ( r )  is 
determined by the requirement that the steady-state solution satisfy: 

div(j( r ) )  = 0 (3) 

together with suitable boundary conditions at the ends of the block. Thus, combining 
Ohm’s law (1) and the conservation law (3) gives: 

div((+( r)V V( r ) )  = 0. (4) 

For given boundary conditions and given conductivity distribution u(r) ,  (4) can be 
solved numerically using the finite difference method to give the voltage distribution 
V ( r )  (more precisely, to compute the voltages V,k at the node points ( i j k )  of the 
imposed finite difference grid). Then the effective conductivity (+* can be found 
using (3). 

The finite difference method is accurate and can be applied to a wide range of 
many-component conductivity distributions. However, it is limited by the size of the 
systems that can be solved in a reasonable amount of computing time (a maximum 
lattice size of about 303 is a good rule of thumb). The size of the system that is simulated 
determines the range of scales of heterogeneity that can be resolved. For example, if 
one wishes to simulate a medium which has an anisotropy ratio in the horizontal to 
vertical directions of 15 : 1 then a lattice of size at least 45’ would be required to obtain 
statistically meaningful results. This is because the effective conductivity of a 
heterogeneous medium depends on both the boundary conditions and the distribution 
of heterogeneities, which in turn depends on the volume being considered. 

Finite-size effects make it important to be able to treat large systems. Because of 
the constraints involved in using the finite-difference method, there has been an impetus 
towards developing more efficient algorithms for calculating the effective conductivity. 
Random walk algorithms, or more general diffusion algorithms, have proved to be 
useful in some special cases [4-61. In particular, it has been shown (see e.g. [7]) that 
simulations based on Einstein’s relation between the conductivity U and the diffusion 
constant D provide a useful approach to the description of electrical transport in 
homogeneous disordered continuum systems. Until recently, this type of simulation 
has been restricted to two-component systems, in which one of the components has 
zero conductivity, using an algorithm called the ‘ant in a labyrinth’ algorithm [2]. In 
[ 11, it was described how to extend the simulations to the case in which both components 
have finite conductivity. In this paper, an extension to the many-component conduc- 
tivity case is discussed. 

It is clear that, in a region in which u(r)  = U is constant, (4) reduces to Laplace’s 
equation: 

u V 2 V = 0 .  ( 5 )  

For the purposes of numerical simulation (see [4]), it is useful to consider the diffusion 
problem associated with ( 5 ) ,  namely 

a V  uv2v=- 
a t  

where t is an artificial simulation time, distinct from real time, so far as the conductivity 
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problem is concerned. Any solution of ( 6 )  which satisfies the physical boundary 
conditions of the original problem will relax to the correct solution of ( 5 )  as t + W. 

The diffusivity of a homogeneous region can be calculated numerically, without actually 
solving for the distribution V (  r )  explicitly, by using lattice random walks. The diffusivity 
is given by the slope D of the line defined by the equation: 

(R2(  t ) )  = Dt (7) 

at large times, where ( R 2 ( t ) )  is the mean square distance travelled by the random 
walkers at time t ,  with the average being taken over an ensemble of random walkers. 

The algorithm [ 11 proposed for the two-component conductivity case involves a 
random walker which performs a lattice random walk on each component separately, 
with the jump rate slowed down by a factor of UJU,  in the low conductivity, u2, 
region as compared with the high conductivity, U , ,  region, and with an appropriate 
probability, the ‘interface’ probability, defined for jumping from one component to 
another when starting from an interface site. The interface probability corresponds to 
the drift term which appears in the governing differential equation (4) when the 
conductivity gradient is non-zero. 

In the proposed algorithm the conductivities are scaled so that U ,  = 1 and u2 = U*/ ul. 
The random walker at site i chooses one of its nearest neighbours, say j, at random 
and moves there with a probability given by: 

or stays put with probability (1 - TIc). In either case, the simulation time is incremented 
by one unit. 

As required, this algorithm reduces to the ‘ant in a labyrinth’ algorithm in the case 
when one of the conductivities is zero. Also, if both conductivities have the same value, 
it reduces to a simple lattice random walk, as required for the homogeneous case 
described above. Furthermore, it was shown numerically in [l], by comparison with 
results obtained using the finite difference method, that the algorithm gives very accurate 
results for the effective conductivity of random, uncorrelated two-component systems 
over a wide range of conductivity contrast ratios, a = u2/ul. 

The algorithm has an obvious extension to the many-component case. The N values 
of the conductivity must be scaled so that 

where umax = max{ui, i = 1, . . . , N } .  Then the jump probability nij is defined to be 
given by (8), as before. 

Notice that if ui = uj = U, then II, = U. Hence, in a region of constant conductivity, 
the random walker performs a simple random walk with the jump rate slowed down 
by a factor U compared with its rate in the highest conductivity region. If ui # uj, then 
IIu is given by the harmonic mean of the two conductivities. This is suggested by the 
fact that for flow in one dimension, or for flow perpendicular to the layers in a layered 
medium, the effective conductivity is given by the harmonic mean of the constituent 
conductivities. A rigorous justification is yet to be provided. The aim is that, over a 
large ensemble of random walkers, the relative time spent in each conductivity region, 
cri, will be such as to give that conductivity its correct weight, Ai, in a weighted 
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mean, U,,,: 

N 
U,,, = A i a i  

i = l  

so that U, will be equal to the effective conductivity, U*, defined in (2). 
The many-component algorithm was tested for conductivity distributions which 

were generated by taking N components with conductivities between 0 and 1 and 
assigning them at random, with equal probability, to the sites of a lattice of size 303 
(note: in this way, it was assured that the conductivity distributions were statistically 
homogeneous over an ensemble. For an inhomogeneous distribution, such as a layered 
system, it would have been necessary to use some sort of biased diffusion algorithm, 
as was done by Schwartz er a1 in their study of electrical transport in inhomogeneous 
continuum systems [8]). Simulations were done with N = 10, 100, 1000 and 27 000. 
The values of the conductivities were chosen using 8 uniform random number generator 
and three different sets were used for each N. Two additional sets of conductivities 
were used for N = 10, one with a bias towards low values and one with a bias towards 
high values. The exact values chosen were 

~~,,=(0.05,0.06,0.95,0.85,0.91,0.005,0.5,0.11,0.87,0.01) 
and (11) 

(Thigh= (0.95,0.85,0.75,0.92,0.82,0.72,0.98, 0.88,0.78,0.99) 

but this was quite arbitrary. An average over 10 different conductivity distributions 
was taken for each set, with lo5 random walkers for each distribution, starting at 
arbitrary locations, and walking for lo3 steps. The results for the effective conductivity, 
U:,, are shown in table 1, alongside the results, U&, obtained using the finite difference 
method (averages were taken over the same ensemble of conductivity distributions). 
The two sets of results are in good agreement, even for the case N = 27 000. 

Table 1. This table shows the values of the effective conductivity, aFw, obtained using the 
random walk algorithm compared with the results obtained using the finite difference 
method, a$, for a variety of N-component conductivity distributions. The conductivity 
distributions were generated by taking N components with conductivities between 0 and 
1 and assigning them at random, with equal probability, to the sites of a lattice of size 30’. 

10 0.295 
0.213 
0.279 

(low) 0.173 
(high) 0.860 

100 0.366 
0.354 
0.392 

1000 0.383 
0.409 
0.396 

27 OOO 0.381 
0.380 
0.380 

0.295 
0.213 
0.281 
0.175 
0.858 

0.368 
0.355 
0.394 

0.384 
0.410 
0.398 

0.382 
0.382 
0.381 
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It is interesting to note that it has been shown theoretically for a log-normal 
distribution of conductivities in two dimensions, that the effective conductivity is given 
exactly by the value of the geometric mean, ugm, in the infinite volume limit [9]. In 
three dimensions, no exact result is known, but first-order perturbation theory gives: 

u* = ugm exp (:) > ugm 

for the log-normal distribution given by: 

4 4 )  = exp(A4) (13) 

where 4 is a Gaussian random variable with zero mean and unit variance [4,10]. To 
the author's knowledge, no theoretical result is available for a uniform distribution, 
but it can be observed that the results of table 1 for the three different sets of N 
uniformly distributed random conductivities appear to be converging to a value of 
0.381 k0.003, for large values of N. This is consistent with the result of (12), in that 
it is close to (but greater than) the value of the geometric mean: 

ugm = exp ( lo' In( 4 )  d 4 )  = 0.368. 

In conclusion, an extension to the many-component case has been given for a 
random walk algorithm which was recently introduced to calculate the effective conduc- 
tivity of random mixtures with two finite conductivity components. The many- 
component algorithm has been tested for the case in which the conductivity distribution 
is generated by taking N component conductivities and assigning them at random, 
with equal probability, to the sites of a lattice of size 303. Simulations have been done 
with N = 10, 100, 1000 and 27 000. Numerical results obtained by using the proposed 
random walk algorithm have been shown to be in close agreement with those obtained 
using the conventional finite difference method. 

I would like to thank the Broken Hill Proprietary Co. Ltd for permission to publish 
this letter. 
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